

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## **VP160 RECITATION CLASS**

FANG Yigao

July 15, 2020



Angular Momentum

**Rolling without Slipping** 

**Rigid Body Dynamics** 





▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Angular Momentum

Particle

$$\overline{L} = \overline{r} \times \overline{P}$$
$$\overline{L} = I \cdot \overline{\omega}$$
$$\overline{\tau} = \overline{r} \times \overline{F}$$
$$\overline{\tau} = \frac{d\overline{L}}{dt}$$

#### Angular Momentum



æ

## **Rigid Body**

$$\overline{L} = \sum_{i=1}^{N} m_i r_i \times (\omega \times r_i)$$
$$I = \sum_{i=1}^{n} m_i r_i^2$$
$$\overline{L} = I \cdot \overline{\omega}$$

#### **Tensor Representation**

$$\begin{bmatrix} \mathbb{I}_{d^{1}\beta^{1}} \end{bmatrix}_{u_{1}^{i}\beta^{1}\pi^{i}\pi^{i}\eta_{1}^{j}\pi^{i}} = \begin{bmatrix} \sum_{i=1}^{N} w_{i} \left( y_{i}^{i^{2}} + z_{i}^{i^{2}} \right) & -\sum_{i=1}^{N} w_{i} x_{i}^{i} y_{i}^{i} & -\sum_{i=1}^{M} w_{i} x_{i}^{i} z_{i}^{i} \\ -\sum_{i=1}^{N} w_{i} \left( y_{i}^{i} x_{i}^{i} \right) & \sum_{i=1}^{N} w_{i} \left( x_{i}^{i^{2}} + y_{i}^{i^{2}} \right) & -\sum_{i=1}^{N} w_{i} y_{i}^{i} z_{i}^{i} \\ -\sum_{i=1}^{N} w_{i} x_{i}^{i} z_{i}^{i} & -\sum_{i=1}^{N} w_{i} \left( x_{i}^{i^{2}} + y_{i}^{i^{2}} \right) & -\sum_{i=1}^{N} w_{i} \left( x_{i}^{i^{2}} + y_{i}^{i^{2}} \right) \\ -\sum_{i=1}^{N} w_{i} x_{i}^{i} z_{i}^{i} & -\sum_{i=1}^{N} w_{i} z_{i}^{i} y_{i}^{i} & \sum_{i=1}^{N} w_{i} \left( x_{i}^{i^{2}} + y_{i}^{i^{2}} \right) \end{bmatrix}$$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### **Conservation of Angular Momentum**

If the sum of all external torques on the system is equal to zero, then the total angular momentum of the system is constant (planar motion). The total angular momentum of a system can only be changed by external torques.

Energy in Rotation

$$E_k = \frac{1}{2}I_c\omega^2 + \frac{1}{2}mv_c^2$$



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

## Parallel-axis Theorem(Steiner's Theorem)

$$I_O = I_C + m\overline{OC}^2$$

Perpendicular-axis theorem

$$I_x + I_y = I_z$$



## **Rolling without Slipping**

 $\omega r_c = v_c$ 





◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## **Rigid Body Dynamics**

- 1. Newton's Laws
- 2. Dynamics Laws for rotational motion
- 3. Conservation of energy
- 4. Conservation of momentum
- 5. Conservation of angular momentum



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

#### Exercise 1

A cylindrical shaped pen was spinning around its axis at a constant angular velocity *omega* in the universe(no external force). At one moment, an instantaneous force was applied on one end of the pen, perpendicular to the axis. Discuss the motion of the pen later.



### Exercise 2

- 1. Find the principle moment of inertia *I* of a stick with length *I* and mass *m*;
- 2. Find the principle moment of inertia *I* of a circle with radius *r* and mass *m*;
- 3. Find the principle moment of inertia *I* of a disk with radius *r* and mass *m*;
- 4. Find the principle moment of inertia *I* of a ball with radius *r* and mass *m*;
- 5. Find the principle moment of inertia *I* of a square with length of side *a* and mass *m*.
- 6. Find the moment of inertia *I* of a stick around one of its ends with length *I* and mass *m*;
- 7. Find the moment of inertia *I* of a disk around one of its diameter with radius *r* and mass *m*;



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

#### Exercise 3

Body 1 consists of one stick with mass *m* and length *I*. Body 2 consists of two sticks with mass m/2 and length I/2. The two sticks are connected with each other with a hinge. Apply an impulse *J* to these two bodies, as shown in the figure. Find  $E_1/E_2$ , where  $E_1$  and  $E_2$  are the energy of the two bodies respectively.





・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

#### Exercise 4

A ball is spinning anticlockwise with angular velocity  $\omega$ . The speed of the ball at this moment is v, pointing right. The friction coefficient of the ground is  $\mu$ , which is strong enough. Discuss the motion of the ball after this moment. What if a circle? What if a disk?



・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

## Exercise 5

A ball is placed on a cant with dip angle  $\theta$ . The friction coefficient is  $\mu$ , which is high enough. Release the ball and discuss the motion afterwards. What if a circle? What if a disk? What if a regular pentagon?



◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

## Exercise 6

- 1. Discuss the motion of a particle that is placed on the inner surface of a spherical pot, close to its bottom, and released from hold (no friction).
- 2. Discuss the motion of a ball with radius r that is placed on the inner surface of a spherical pot with radius R, assume R >> r, close to its bottom, and released from hold (enough friction).